
The Oberon-2 Reflection Model and its

Applications

Hanspeter Mössenböck, Christoph Steindl

Johannes Kepler University Linz

Institute for Practical Computer Science

Altenbergerstraße 69, A-4040 Linz

{moessenboeck,steindl}@ssw.uni-linz.ac.at

Abstract. We describe the reflection model of Oberon-2, a language in the

tradition of Pascal and Modula-2. It provides run-time information about the

structure of variables, types and procedures and allows the programmer to

manipulate the values of variables. The special aspect of the Oberon-2

reflection model is that metainformation is not obtained via metaclasses. It

is rather organized as structured sequences of elements stored on a disk,

which can be enumerated by an iterator. This results in a simple and uniform

access mechanism and keeps the memory overhead to a minimum. We also

show a number of challenging applications that have been implemented

with this reflection model.

1. Introduction

Metaprogramming, i.e. the observation and manipulation of running programs, has

become an important instrument in the toolbox of today’s software engineer.

Pioneered by languages such as Lisp and Smalltalk, metaprogramming is now part of

many modern programming languages such as Java [ArG96], CLOS [Att89] or Beta

[LMN93]. If metaprogramming is not only applied to other programs, but also to the

program that uses it, it is called reflection. A reflective program can obtain and

manipulate information about itself.

In this paper we describe the reflection model of Oberon-2 [MöW91], a language in

the tradition of Pascal and Modula-2. Oberon-2 is a hybrid object-oriented language. It

provides classes with single inheritance that are declared within modules. Oberon

[WiG89] is not only a programming language but also a run time environment,

providing garbage collection, dynamic module loading, and so-called commands,

which are procedures that can be invoked interactively from the user interface, thus

providing multiple entry points into a system.

Commands and dynamic loading already constitute a kind of metaprogramming.

True reflection, however, was added to Oberon-2 by the work of Josef Templ [Tem94].

We adapted and refined his ideas into a reflection model that allows us to answer

questions like:

• What are the components of a record type T declared in a module M?

• What procedures are currently active? What are the names, types and values of their

local variables?

• Does the caller of the currently executing procedure have a variable named x, and if

so, what is its type and value?

Questions like these allow us to do a number of interesting things, which would not

be possible with an ordinary programming language. We will show examples of such

applications in Section 3 of this paper.

The rest of this paper is organized as follows. In Section 2 we describe the

reflection model of Oberon-2 and its general usage. Section 3 shows a number of

useful applications that we implemented on top of this reflection model, i.e. a generic

output function, an object inspector, an embedded SQL facility, and an exception

handling mechanism. In Section 4 we discuss security and performance issues. Section

5 summarizes the results.

2. The Oberon-2 Reflection Model

The reflection model of a programming language is characterized by two aspects:

• What metainformation is available about programs at run time?

• How can this information be accessed in order to observe and manipulate programs?

 We will describe these two aspects for Oberon-2. The special thing about our approach

is that all metainformation resides on disk instead rather than in main memory and

that it is accessed by so-called riders, which iterate over the structure and parse it as

required. This technique is space-efficient since no metaobjects have to be kept in

memory. All access to the metainformation follows the Iterator pattern [GHJV95],

which guarantees simple and uniform access.

Our reflection mechanism is encapsulated in a library module called Ref [StM96].

It defines a Rider type for iterating over the metainformation as well as procedures for

placing riders on various kinds of metainformation sequences.

In the following sections we will first describe the structure of the metainformation

and then explain how to navigate through it.

 2.1 Metainformation

 As a simple abstraction, a program can be organized as a set of hierarchical sequences.

For example, a program consists of a sequence of modules. Every module is a

sequence of variables, types and procedures. A procedure, in turn, is a sequence of

variables, and so on. Fig. 1 shows an example of such a decomposition.

MODULE M;

 PROCEDURE P(a, b: INTEGER);

 VAR rec: RECORD f1, f2: REAL END;

 BEGIN … END P;

 PROCEDURE Q(x: INTEGER);

 VAR y, z: CHAR;

 BEGIN … END Q;

END M.

module

 = seq. of procedures
P Q

a b rec procedure

 = seq. of variables

f1 f2 structured variable

 = seq. of components

 Fig. 1. Metainformation of module M in form of hierarchical sequences

 Information about such program sequences is called metainformation and can be

described by the following grammar in EBNF notation (curly brackets denote zero or

more repetitions):

 ProgramStruct = {Module}.
Module = {Variable} {RecordType} {Procedure}.
RecordType = {Variable} {Procedure}.
Procedure = {Variable}.
Variable = SimpleVar | RecordVar | ArrayVar.
RecordVar = {Variable}.
ArrayVar = {Variable}.

 ProgramData = GlobalVars | LocalVars | DynamicVars.
GlobalVars = {Variable}.
LocalVars = {Frame}.
Frame = {Variable}.
DynamicVars = {HeapObject}.
HeapObject = {Variable}.

 The information about the structure of a module is created by the compiler when the

module is compiled. It is appended to the module's object file so that it is always

copied and moved together with the object file. This avoids inconsistencies between a

module and its metainformation.

The structural information is also used to interpret the program's data, which would

otherwise be just a sequence of bytes without any interpretation.

 2.2 Navigation

 The metainformation is accessed by so-called riders, which are iterators that allow us

to traverse a sequence of elements and to zoom into structured elements. The class

Rider declared in module Ref looks as follows:

 TYPE
 Rider = RECORD
 name: ARRAY 32 OF CHAR;
 mode: SHORTINT; (*Var, Type, Proc, …, End*)
 form: SHORTINT; (*Int, Char, Bool, Record, …*)
 ...
 PROCEDURE (VAR r: Rider) Next;
 PROCEDURE (VAR r: Rider) Zoom (VAR r1: Rider);
 ...
 END;

 When a rider r is placed on an element of a sequence, r.name holds the name of this

element; r.mode tells if the element is a variable, a type, a procedure, etc.; r.form

encodes the type of the element (structured types are denoted by a special code; their

components can be inspected by zooming into the element; see below).

 Iterating. The following example shows how to traverse the global variables of a

module M and print their names:

 Ref.OpenVars("M", r);
WHILE r.mode # Ref.End DO
 Out.String(r.name);
 r.Next
END

 A rider r is opened on the global variables of module M . While it is not moved

beyond the last variable (r.mode = Ref.End) the name of the current variable is printed

and the rider is advanced to the next variable by the operation r.Next.

 Zooming. If a rider is placed on a structured element, it is possible to zoom into

this element and to iterate over its components. For example, to access the local

variables of the current procedure’s caller we can zoom into the second frame on the

activation stack, using the following statements:

 Ref.OpenStack(r);
r.Next;
r.Zoom(r1)

 Ref.OpenStack(r) opens a rider r on the frame of the currently active procedure. r.Next

moves it to the caller’s frame. r.Zoom(r1) zooms into that frame and sets a new rider

r1 to the first local variable in that frame. The variables of this frame can then be

traversed as above using r1.

 Placing a rider. Riders can be opened on various kinds of metainformation

sequences as shown by the following table:

 OpenVars(module, r) sets r to the first global variable of the specified module

 OpenStack(r) sets r to the topmost stack frame

 OpenPtr(p, r) sets r to the first component of the object pointed to by p

 OpenProcs(module, r) sets r to the first procedure of the specified module

 OpenTypes(module, r) sets r to the first record type of the specified module

 If a rider is opened on data (using OpenVars, OpenStack or OpenPtr), and if it is

positioned on a non-structured variable, the value of this variable can be read or

written using operations such as r.ReadInt(n) or r.WriteInt(n). In this case the rider

serves as a link between the data (e.g. a stack frame) and the metainformation that is

used to interpret that data (Fig.2).

description of a description of b description of c metainformation

value of a value of b value of c

rider

data

rider.Next()

…

…

Fig. 2. A rider as a link between data and its metainformation

 If a rider is opened on structural information (using OpenProcs or OpenTypes), there

is no data to be read or written. Such riders can only be used to explore the structure of

procedures and types.

 Details about the Rider class, its fields and its operations are described in [StM96].

The difference between our implementation and the one in [Tem94] is mainly that we

use a single rider type to iterate over all kinds of metainformation while [Tem94] uses

special rider types for variables, procedures, types, etc.

 2.3 Examples

 The following examples should give you a rough impression of what you can do with

the module Ref and its riders.

 Assume that we want to print the names of all currently active procedures together

with the names of their local variables. The following code fragment does the job:

 VAR r, r1: Ref.Rider;
...
Ref.OpenStack(r); (*r is on the most recent frame*)
WHILE r.mode # Ref.End DO
 Out.String(r.mod); (*name of this frame’s module*)
 Out.String(".");
 Out.String(r.name); (*name of this frame’s proc.*)
 Out.Ln;
 r.Zoom(r1); (*r1 is on first var. of frame*)
 WHILE r1.mode # Ref.End DO
 Out.String(r1.name); Out.Ln;
 r1.Next
 END;
 r.Next (*move to the caller's frame*)
END

 Of course we could do any processing with the traversed variables or procedures. For

example, we could print their values and types (this was actually used for the

implementation of the Oberon debugger). We could also look for all occurrences of a

certain value within the variable sequence and report them to a client.

 The next example looks for a global record variable named varName declared in a

module named modName. Note that the names of the variable and the module need not

be statically known. They could have been obtained at run time.

 VAR
 r: Ref.Rider;
 varName, modName: ARRAY 32 OF CHAR;
...
Ref.OpenVars(modName, r);
WHILE (r.mode # Ref.End) & (r.name # varName) DO
 r.Next
END;
IF r.form = Ref.Record THEN (*found*)
 ...
END

 3. Applications

 In this section we show how the Oberon-2 reflection model can be used to implement

a number of interesting system services. In other programming systems, such services

are often part of the programming language. Reflection, however, allows us to

implement them outside the language in separate library modules so that they don’t

increase the size and complexity of the compiler. If a user does not need a service, he

does not have to pay for it. Reflection also gives the system programmer a chance to

adapt these services to special needs.

 3 . 1 A Generic Output Function

 In most modern programming languages input/output is not part of the language but

is implemented in form of library functions. The problem with this approach is that it

requires a separate function for every data type that is to be read or written. A typical

output sequence could look as follows:

 Out.String("Point (");
Out.Int(p.x);
Out.String(", ");
Out.Int(p.y);
Out.String(") is inside the search area");

 Function overloading alleviates this problem, but still requires multiple function calls

to print the above message. It would be nice to have a single generic function which

is able to print any sequence of variables of a program with a single call. Reflection

allows us to do that.

 The following output function takes a string argument with the names of the

variables to be printed. For example, the call

 Put.S("Point (#p.x, #p.y) is inside the search area")

 prints the argument string, but before printing it, it replaces every variable that is

preceded by a # with the value of this variable.

 The function Put.S is implemented with module Ref. It looks up the marked

variables of the argument string in various scopes. For example, a variable rec.arr[i] is

looked up as follows:

• rec is first searched in the local scope of the currently active procedure (using

OpenStack) and—if not found—in the global scope of the current module (using

OpenVars).

• If rec is found and turns out to be a record variable, a rider r is positioned on rec.

Put.S zooms into rec (using r.Zoom(r)) and looks for a field arr. If it is found, the

rider r is positioned on it.

• Since arr turns out to be an array, Put.S zooms into this array. It starts a new

search for the variable i (using first OpenStack, then OpenVars as above). The

value of i is read, the rider is positioned on the i-th element of arr, and the value of

this element is read. This is the value of rec.arr[i]. It is inserted into the output

string.

3.2 An Object Inspector

An object inspector is a debugging tool that can be used to inspect the values of the

object fields. It can be conveniently implemented with Module Ref. To inspect an

object that is referenced by a pointer p, one opens a rider r on the object's fields using

Ref.OpenPtr(p, r) and iterates over them. Fields with a basic data type are simply

shown with their values, whereas structured variables (arrays and records) are first

represented in a collapsed form that that can be expanded on demand. When a collapsed

variable is expanded, a new rider is placed on the inner elements (using r.Zoom(r1))

and is used to traverse the inner sequence.

Fig. 3 shows an example of a variable head that points to a list of three nodes. The

middle part of the picture shows the list in collapsed state, the right part in expanded

state. The triangles are so-called active text elements [MöK96] that hide the inner

structure of an object. If the user clicks on a filled triangle, the object structure is

expanded and shown between hollow triangles. A click on the hollow triangles

collapses the structure again.

TYPE

 Node = POINTER TO

 RECORD

 value: INTEGER;

 next: Node

 END;

VAR head: Node;

head = ^ head = ^

 value = 6

 next = ^

 value = 5

 next = ^

 value = 4

 next = NIL

 Fig. 3. Object inspector view (collapsed and expanded)

A textual view like the one in Fig.3 is sufficient to represent data structures such as

linear lists or trees, but it is less suitable for circular lists or graphs. For such

purposes we have implemented a graphical tool that can also show circular data

structures. This tool uses the same reflection mechanism as explained above.

3.3 Embedded SQL

SQL (structured query language) is a widely used standard for a database query

language. It is normally used interactively from a dialog window. If a programmer

wants to issue an SQL query from within a programming language (e.g. C++),

however, he has to use an extended form of the language. For C++ there exists such

an extension which is called embedded SQL [ESQL89]. It adds database query

statements that are translated into library calls by a preprocessor.

We used a different implementation for embedded SQL that does not need any

language extensions but is based on reflection [Ste96]. SQL queries can be specified as

strings, which are passed to a function Prepare that analyzes and prepares them for

execution. For example, one could write

stat := conn.Prepare("CREATE TABLE Persons FOR Person")

A prepared SQL statement can be executed with stat.Execute. Thus the statement can

be executed several times without rebuilding internal data structures every time.

The SQL query can contain names of variables or types, which are then looked up

in the calling program and are converted to appropriate data structures of the SQL

libraries. For example, Person could be a type declared as follows:

TYPE
 Person = RECORD
 firstName, lastName: ARRAY 32 OF CHAR;
 age: INTEGER
 END ;

Its structure is used by the above SQL statement to create a table with the columns

firstName, lastName and age. To distinguish program variables from database names

(e.g. for tables and columns), variables are preceded by a colon in a query. In the

following code fragement

VAR
 minAge: INTEGER;
 name: ARRAY 32 OF CHAR;
...
stat := conn.Prepare("SELECT firstName FROM Persons
WHERE age > :minAge INTO :name");

minAge and name are Oberon variables. They are looked up by reflection. The value

of minAge is used to evaluate the WHERE clause. As a result, the database value

firstName is transferred to the Oberon variable name.

Variables can be either scalar or of a record type. When record variables are

specified, they are implicitly expanded to their fields. The statement

"SELECT * FROM Persons INTO :person"

is therefore equivalent to

"SELECT * FROM Persons INTO :person.firstName,
:person.lastName, :person.age".

3 . 4 An Exception Handling Mechanism

Exception handling is often part of a programming language, but it can also be

implemented outside of the language, i.e. in a library module [Mil88]. Library-based

exception handling is often implemented with the Unix functions setjmp and

longjmp, which save and restore the machine state. We have followed a different

approach based on reflection [HMP97]. Our technique has the advantage that it does

not slow down programs as long as they do not raise exceptions.

Our exception handling mechanism is based on three concepts: a guarded block of

statements which is protected against exceptions, one or more exception handlers, and

a mechanism to raise exceptions (Fig. 4).

statement;

statement;

foo();

statement;

Guarded Block
statement;

statement;

Exception Handler

proc foo();

 …

 raise(exception);

 …

end foo;

Fig. 4. Exception handling concepts

If an exception is raised in the guarded block or in one of the functions called from it,

a suitable exception handler is called. After executing the handler, the program con-

tinues with the first statement after the guarded block. Exceptions are classes derived

from a common exception class.

In our implementation, the concepts of Fig. 4 are mapped to the Oberon-2 lan-

guage as follows:

• The guarded block is represented by an arbitrary procedure P.

• An exception handler is represented by a local procedure of P. It must have a single

parameter whose type is a subclass of Exceptions.Exception.

• An exception is raised by the call of the library procedure Exceptions.Raise(e)

where e is an object of an exception class.

The following code fragment shows an example (The classes Overflow and Underflow

are subclasses of Exceptions.Exception).

PROCEDURE GuardedBlock;
 VAR ofl: Overflow; ufl: Underflow;

 PROCEDURE HandleOfl (VAR e: Overflow); …
 END HandleOfl;

 PROCEDURE HandleUfl (VAR e: Underflow); …
 END HandleUfl;

BEGIN
 …
 IF … overflow … THEN
 … fill the ofl object with error information …
 Exceptions.Raise(ofl)
 END;
 …
END GuardedBlock;

In this example, GuardedBlock raises an exception by calling Exceptions.Raise(ofl).

Procedure Raise is implemented with reflection. It determines the type of ofl and

searches through the local procedures of GuardedBlock to find a procedure with a

matching parameter type. This is the exception handler (in this example HandleOfl). If

such a handler is found, it is called. Finally, the activation stack is unrolled so that the

control is returned to the caller of GuardedBlock.

If no matching exception handler is found in GuardedBlock, the lookup continues

in the caller of GuardedBlock. If this caller P contains a local procedure H with a

matching parameter type, H is called as an exception handler, and then the program

continues with the first statement after P.

If no exception handler is found in any of the currently active procedures, the

program is aborted with a standard error message. The following pseudocode fragment

shows the implementation of Raise:

PROCEDURE Raise (VAR e: Exceptions.Exception);
 E := dynamic type of e;
 FOR all stack frames in reverse order DO
 P := procedure of this frame;
 FOR all local procedures H of P DO
 IF H has a parameter of type E or a subtype THEN
 Invoke H(e) ;
 Return to the caller of P
 END
 END
 END
END Raise;

Except of the underlined parts, all actions of Raise are implemented with the reflection

model described in Section 2. In particular, riders are used to traverse the stack frames,

the procedures and the parameters to perform the handler lookup. The underlined

actions involve stack manipulation. They are implemented using low-level facilities

of Oberon-2 and are not show here (see [HMP97]). The dynamic type of an object can

be obtained with an Oberon system function.

The exception handling mechanism is encapsulated in a library module with the

following simple interface:

DEFINITION Exceptions;
 TYPE Exception = RECORD END; (*abstract base class*)
 PROCEDURE Raise (VAR e: Exception);
END Exceptions.

4. Discussion

In this section we discuss some consequences and tradeoffs of the Oberon reflection

model, namely security and performance issues as well as the interference of reflection

with optimizing compilers.

4.1 Security

The Oberon reflection model gives the systems programmer full access to all

variables, types and procedures in a program, even to the private objects that are not

exported from a module. This of course raises the question of security. The visibility

rules of the language can be circumvented by reflection, however, this is necessary to

implement system software such as debuggers or inspectors.

Although the whole structure of a program is visible to reflection, it is not

possible to access it in an undisciplined way. The Oberon reflection model is strongly

typed. All metainformation is read and written according to their types. It is never

possible, for example, to access a pointer as an integer or vice versa.

The most critical fact about the Oberon reflection model is that data can not only

be read but also written. This is sometimes necessary as for example in the Embedded

SQL facility described in Section 3.3. One should use this feature very carefully.

According to our experience most reflective applications don't make use of it.

Clearly, reflection allows a programmer to do more than what he could do with an

ordinary programming language. But this is exactly its advantage. System

programmers need sharper tools than application programmers.

4.2 Interference with Optimizing Compilers

An optimizing compiler may decide to keep variables in registers rather than in

memory, to eliminate variables at all, or to introduce auxiliary variables, which are

not in the source program. Some of these optimizations are easy to cope with in the

reflection model, others are more difficult to handle. The Oberon-2 compiler does not

perform aggressive optimizations. In addition to some code modifications (which do

not affect the metainformation) the compiler keeps certain variables in registers. For

such variables, their register numbers are stored in the metainformation, so that riders

can find them. The Oberon-2 compiler does not eliminate, introduce or reorder

variables. But even such cases could be handled if the metainformation carried enough

information about the optimizations that the compiler performed.

4.3 Performance

The Oberon reflection model leads to small memory overhead at the cost of run time

efficiency. The layout of our metainformation is sequential. For example, in order to

access the information of the third local variable in the fourth procedure of a module,

one has to skip three procedures, zoom into the fourth one and search for the third

variable. Table 1 shows the approximate costs for reading (i.e. skipping) various kinds

of elements in the metainformation sequence. Of course, the time to skip a procedure

or a record type depends on its size.

Table 1. Access times for specific program elements (on a Pentium II with 300 MHz)

Element to be skipped Cost

Local variable 2 µs

Global variable 2 µs

Record field 2 µs

Record type 9 µs

Procedure 15 µs

The sequential layout of the metainformation as described in Section 2.1 requires us to

skip all record types before we get to the first procedure. Furthermore, in our current

implementation, the global variables of a module are treated like local variables of the

module body, which is considered to be a special procedure. Accessing them requires

us to skip to this procedure first. Constraints like these make random access of meta-

information elements somewhat inefficient. In practice, however, a typical access

pattern involves both random access and sequential access so that the run time was

never a serious problem in all the applications described in Section 3. As a task for

further research one could try to redesign the metainformation so that it is indexed and

random access becomes more efficient.

Our current implementation has the advantage that the metainformation is stored in

a very compact form. For example, the metainformation of the whole Oberon

compiler (9 modules, 413 procedures, 14 types, 1690 variables and 86 record fields)

consumes only 23706 bytes on the disk. When it is accessed it is cached in memory

so that it is not necessary to go to the disk for every access. Reading the meta-

information of the whole compiler sequentially takes 30 milliseconds.

5. Summary

The fundamental difference between the Oberon-2 reflection model and other models is

that the metainformation is not accessed via metaobjects. It is rather parsed on demand

from a file (which is usually cached in main memory to avoid file operations). One

advantage of this approach is the reduced number of objects needed to represent the

metainformation and the reduced memory consumption. For example, when meta-

information is used in a post-mortem debugger to produce a readable stack dump, it is

important not to waste memory since the reason for the trap might be the lack of

memory. A disadvantage of our approach is that the information is parsed again and

again. But this is not time-critical as the measurements show.

The Oberon-2 reflection model is currently designed for convenient access to the

structure and values of program objects. In the future, we plan to extend it with

mechanisms for calling and intercepting methods.

Acknowledgements

The Oberon-2 reflection model was originally designed by Josef Templ [Tem94] in his

PhD thesis. We refined his model and adapted it for our purposes. Our colleagues

Markus Knasmüller [Kna97], Markus Hof [Hof97], Martin Rammerstorfer and Günter

Obiltschnig [Obi98] used the model to implement various applications on top of it.

We wish to thank the anonymous referees for their comments that helped us to make

the paper more focussed.

References

[ArG96] Arnold K., Gosling J.: The Java Programming Language. Addison-Wesley,

1996

[Att89] Attardi G., et al.: Metalevel Programming in CLOS. Proceedings of the

ECOOP’89 Conference. Cambridge University Press, 1989

[ESQL89] Database Language – Embedded SQL (X3.168-1989). American National

Standards Institute, Technical Committee X3H2

[GHJV95] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns—Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995

[HMP97] Hof M., Mössenböck H., Pirkelbauer P.: Zero-Overhead Exception Handling

Using Metaprogramming. Proceeding of SOFSEM’97, Lecture Notes in

Computer Science 1338, 1997

[Hof97] Hof M.: Just-In-Time Stub Generation, Proc. Joint Modular Languages

Conference '97, Hagenberg, Lecture Notes in Computer Science 1204, Springer-

Verlag, 1997

[Kna97] Knasmüller M.: Oberon-D, On Adding Database Functionality to an Object-

Oriented Development Environment, Dissertation, University of Linz, 1997

[LMN93] Lehrmann-Madsen O., Moller-Pedersen B., Nygaard K.: Object-Oriented

Programming in the BETA Programming Language. Addison-Wesley, 1993

[Mil88] Miller W.M.: Exception Handling without Language Extensions. Proceedings

of the USENIX C++ conference, Denver CO, October 1988

[MöK96] Mössenböck H., Koskimies K.: Active Text for Structuring and Understanding

Source Code SOFTWARE - Practice and Experience, 26(7): 833-850, July 1996

[MöW91] Mössenböck H., Wirth N.: The Programming Language Oberon-2. Structured

Programming, 12(4):179-195, 1991

[Obi98] Obiltschnig G.: An Object-Oriented Interpreter Framework for the Oberon-2

Programming Language, Diploma Thesis, University Linz, 1998

[Ste96] Steindl Ch.: Accesing ODBC Databases from Oberon Programs. Report 9 ,

University of Linz, Institute for Practical Computer Science, 1996

[StM96] Steindl Ch., Mössenböck H.: Metaprogramming facilities in Oberon for

Windows and Power Macintosh. Report 8, University of Linz, Institute for

Practical Computer Science, 1996

[Tem94] Templ J.: Metaprogramming in Oberon. Dissertation, ETH Zurich, 1994

[WiG89] Wirth N., Gutknecht J.: The Oberon System. Software—Practice and

Experience, 19(9):857-893, 1989

